Wind Turbine Blades Push Size Limits
By Chris Webb, Contributor
10 July 2012 | 6 Comments
Researchers in Europe and the US are exploring how wind turbine blades could be scaled up for 10 MW or even 20 MW wind turbines.
LONDON -- Using sophisticated modelling techniques and comparing the results with existing turbine technology, a 2011 report set out to see if 20-MW offshore turbines could become a reality. The report, entitled Upwind: Design Limits and Solutions for Very Large Wind Turbines, compared theoretical 20-MW designs with present technology. 'Yes, we have the technology but the economics will decide. Costs models will tell us the way forward,' says Bernard Bulder of the Energy Research Centre of the Netherlands (ECN).
The goal of a larger turbine — to increase efficiency by capturing more wind energy using longer blades — was achievable, the report said. The US$33 million UpWind project determined to what extent such turbines are feasible, and whether they make financial sense.
A look into the near future was offered early last year, when Danish company Vestas debuted its 7-MW offshore giant. In October 2011 DONG Energy announced it would test the turbine, with plans to install six at a demonstration site in 2013. Also in 2011, GE Global Research, the technology development arm of General Electric, announced it was to partner with the Oak Ridge National Laboratory to develop a generator to support large-scale wind turbines in the 10-15 MW range. Work has begun on the first phase of the two-year, $3 million project funded by the US Department of Energy.
But the EU-backed Upwind research project is a step forward in assessing the challenges ahead. Made up of 48 partners, half from the private sector and half from the research and academic sector, UpWind is the largest public/private partnership designed for the wind energy sector.
UpWind demonstrates that a 20 MW design is feasible. No significant problems were found when upscaling wind turbines to that size, provided some key innovations are developed and integrated. These innovations come with extra cost, and the cost:benefit ratio depends on a complex set of parameters. The project resulted, for instance, in the specification of mass:strength ratios for future very large blades securing the same load levels as the present generation of wind turbines. Thus, in principle at least, future large rotors and other turbine components could be realised without cost increases, assuming the new materials are within certain set cost limits.
Wind Turbine Blades Push Size Limits
By Chris Webb, Contributor
10 July 2012 | 6 Comments
10 July 2012 | 6 Comments
Researchers in Europe and the US are exploring how wind turbine blades could be scaled up for 10 MW or even 20 MW wind turbines.
The goal of a larger turbine — to increase efficiency by capturing more wind energy using longer blades — was achievable, the report said. The US$33 million UpWind project determined to what extent such turbines are feasible, and whether they make financial sense.
A look into the near future was offered early last year, when Danish company Vestas debuted its 7-MW offshore giant. In October 2011 DONG Energy announced it would test the turbine, with plans to install six at a demonstration site in 2013. Also in 2011, GE Global Research, the technology development arm of General Electric, announced it was to partner with the Oak Ridge National Laboratory to develop a generator to support large-scale wind turbines in the 10-15 MW range. Work has begun on the first phase of the two-year, $3 million project funded by the US Department of Energy.
But the EU-backed Upwind research project is a step forward in assessing the challenges ahead. Made up of 48 partners, half from the private sector and half from the research and academic sector, UpWind is the largest public/private partnership designed for the wind energy sector.
UpWind demonstrates that a 20 MW design is feasible. No significant problems were found when upscaling wind turbines to that size, provided some key innovations are developed and integrated. These innovations come with extra cost, and the cost:benefit ratio depends on a complex set of parameters. The project resulted, for instance, in the specification of mass:strength ratios for future very large blades securing the same load levels as the present generation of wind turbines. Thus, in principle at least, future large rotors and other turbine components could be realised without cost increases, assuming the new materials are within certain set cost limits.
A look into the near future was offered early last year, when Danish company Vestas debuted its 7-MW offshore giant. In October 2011 DONG Energy announced it would test the turbine, with plans to install six at a demonstration site in 2013. Also in 2011, GE Global Research, the technology development arm of General Electric, announced it was to partner with the Oak Ridge National Laboratory to develop a generator to support large-scale wind turbines in the 10-15 MW range. Work has begun on the first phase of the two-year, $3 million project funded by the US Department of Energy.
But the EU-backed Upwind research project is a step forward in assessing the challenges ahead. Made up of 48 partners, half from the private sector and half from the research and academic sector, UpWind is the largest public/private partnership designed for the wind energy sector.
UpWind demonstrates that a 20 MW design is feasible. No significant problems were found when upscaling wind turbines to that size, provided some key innovations are developed and integrated. These innovations come with extra cost, and the cost:benefit ratio depends on a complex set of parameters. The project resulted, for instance, in the specification of mass:strength ratios for future very large blades securing the same load levels as the present generation of wind turbines. Thus, in principle at least, future large rotors and other turbine components could be realised without cost increases, assuming the new materials are within certain set cost limits.
No comments:
Post a Comment