Geothermal Innovations, Part 2: Stimulating Reservoirs in the Field and Partnerships in the Industry
By Leslie Blodgett, GEA
November 21, 2012
November 21, 2012
WASHINGTON D.C. -- The U.S. geothermal industry's recent innovations contribute to increasing potential for the use of geothermal to power the renewable energy future, but high upfront risks and costs of development are one reason geothermal needs federal funding programs to expand.
“Federal and state incentives help attract investors to geothermal projects, and are essential to overcoming the obstacles facing the industry today. But, with continued growth and innovation, the cost and risk of projects should decline as the industry expands and technology improves,” according to Geothermal Energy Association (GEA) Executive Director Karl Gawell.
The 2005 Energy Policy Act provided new geothermal power plants the same tax incentive as wind projects: US$ 0.02 per kilowatt hour produced during each of the first ten years of production.
Well-known in the geothermal world is a report from the Massachusetts Institute of Technology (MIT) conducted in 2006, which arguably helped to usher in a focus on research for EGS. "The Future of Geothermal Energy, Impact of Enhanced Geothermal Systems for the 21st Century” stated that EGS could provide the United States with about 100 gigawatt-equivalent of domestic capacity in the next 50 years.
Also of note was a 2010 workshop on “Exploration and Assessment of Geothermal Resources” in which The Great Basin Center for Geothermal Energy (GBCGE), the DOE Geothermal Technology Program office (DOE-GTP) and the GEA invited geothermal professionals to discuss the state of knowledge of exploration for geothermal resources. The discussion revolved around exploration techniques in areas of Geology and Structure, Geophysics, Remote Sensing, Geochemistry, Temperature Distribution, and Reservoir Characterization.
An understanding of geology is essential to the development process. In Part 1 of this two-part look at geothermal technologies, the Geothermal Energy Association (GEA) examined some of the techniques and tools that are facilitating progress in geological testing and analysis for conventional and EGS geothermal projects.
The 2005 Energy Policy Act provided new geothermal power plants the same tax incentive as wind projects: US$ 0.02 per kilowatt hour produced during each of the first ten years of production.
Well-known in the geothermal world is a report from the Massachusetts Institute of Technology (MIT) conducted in 2006, which arguably helped to usher in a focus on research for EGS. "The Future of Geothermal Energy, Impact of Enhanced Geothermal Systems for the 21st Century” stated that EGS could provide the United States with about 100 gigawatt-equivalent of domestic capacity in the next 50 years.
Also of note was a 2010 workshop on “Exploration and Assessment of Geothermal Resources” in which The Great Basin Center for Geothermal Energy (GBCGE), the DOE Geothermal Technology Program office (DOE-GTP) and the GEA invited geothermal professionals to discuss the state of knowledge of exploration for geothermal resources. The discussion revolved around exploration techniques in areas of Geology and Structure, Geophysics, Remote Sensing, Geochemistry, Temperature Distribution, and Reservoir Characterization.
An understanding of geology is essential to the development process. In Part 1 of this two-part look at geothermal technologies, the Geothermal Energy Association (GEA) examined some of the techniques and tools that are facilitating progress in geological testing and analysis for conventional and EGS geothermal projects.
No comments:
Post a Comment