Ocean Energy Technologies Speeding Towards Commercialization
What many thought would take decades may only be a few years away - ocean energy technologies are finally turning some heads on their way to large-scale development.
New Hampshire, USA -- The ocean energy sector has been steadily creeping towards commercial reality year after year, with technology test deployments taking place worldwide. After all, the ocean energy market is not an easy place to do business, just building a technology prototype can cost up to $30 million. This year, however, some major project announcements indicate that the industry could be moving to the next level - much faster than anyone had previously predicted.
"People are interested in [ocean energy] and they are in [the energy] industry," said Greg Leatherman of Environment Coastal & Offshore during the opening session at Energy Ocean International. "You have Lockheed Martin in China building the biggest OTEC [ocean thermal energy conversion] facility. In Scotland, you have the biggest wave project offshore farm [Swansea Bay Tidal Lagoon] in history. You have construction beginning at Cape Wind. All happening right now, this summer."
At the Energy Ocean International Conference 2013 that took place in Providence, R.I., several technologies that made it to the coveted prototype stage were highlighted during the keynote. "These gentleman are here because the technology is more viable," said Leatherman.
Small Turbine, Big Potential
The tidal team at Schottel is on a mission to produce a turbine that uses the least amount of material with an ideal ratio of power. To achieve this goal, Schottel invested in a UK-based company called TidalStream to have the most energy produced in one installation, according to Martin Baldus, product manager of renewable energy at Schottel Tidal.
"A lot of devices have 1 megawatt (MW) of installed power. We were wondering if this was the right direction to go into," said Baldus. "Is the scale of the turbine itself important, or should we focus on more installed turbines with less mass and less cost per turbine?"
According to Baldus, if a turbine is scaled down to somewhere in the range of 50 kilowatts (kW), which is about four meters in diameter, and 20 are lined up in one installation, then there would be about 16 tons of material used per MW. Other turbine systems typically use about 100 tons. "Our approach is to simplify as much as possible," he explained
No comments:
Post a Comment